A Deep Learning virtual machine (TensorFlow)

16 January 2021
 GitHub

Introduction

This is a VirtualBox VM that is automatically generated using Vagrant.

Machine Learning and Deep Learning packages installed are: Scikit-Learn, NLTK, Keras, TensorFlow and Theano. A Vagrant file is used to generate this VM, which runs on Ubuntu 14.04 (trusty64).

Getting Started

  • This VM should work in Windows, macOS and Linux

  • VirtualBox (version 6+) is required

  • Download and install Vagrant

  • Clone the virtual machine specs with:

git clone https://github.com/f0nzie/vagrant-deeplearning-t64shjpythtfkeskl-apy352.git
  • Change to the folder where this repo has been cloned and type on your local terminal:

    vagrant up
    
  • Browse to Jupyter with: http://127.0.0.1:8100/. Try the different notebooks in there.

  • To access the virtual machine console or terminal, type:

    vagrant ssh
    
  • When finished, power off the virtual machine with:

    vagrant halt
    

What’s Installed

  • Deep Learning
    • Keras 2.0.6
    • TensorFlow 1.3.0
    • Theano 0.8.2
  • Machine Learning
    • sklearn 0.18
    • nltk 3.2.1
  • Python
    • Anaconda3 Python 3.5.2
    • numpy 1.11.1
    • scipy 0.18.1
    • matplotlib 1.5.3
    • bokeh 0.12.2
    • pandas, 0.18.1
    • seaborn 0.9.0
    • jupyter 1.0.0
    • jupyter_core 4.2.0
    • ipython 5.1.0
    • h5py 2.6.0
    • pip 8.1.2

Jupyter notebook server

Jupyter notebook server is available at the host’s browser at http://localhost:8100.

Password : password

Testing

There are several notebooks to test the deep learning packages:

Other

  • Disk size: 40 GB
  • RAM: 4096 GB
  • CPUs: 2
  • Network: NAT
  • USB: off
  • Shared folder: 2

Codes machine name

  • t64: Ubuntu Trusty 64-bit
  • sh: shell script provisioning
  • jpy: Jupyter server
  • rss: RStudio Server
  • th: Theano
  • tf: TensorFlow
  • ke: Keras
  • skl: scikit-learn
  • -apy: Anaconda Python followed by version number
  • Host name: T64G40A8100
  • VM name: vagrant-T64G40DLSJ352A8100
  • Short name: T64G40DLSJ352A8100

Notes

  • There is only one version of Anaconda3 that works with the setting in the provisioning files, and that is Anaconda3-4.2.0-Linux-x86_64.sh. Changing it to 4.3.0 or 4.4.0 will not allow to auto start Jupyter.

« Artificial Intelligence diagrams | A Deep Learning virtual machine with PyTorch and TensorFlow »