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Abstract
Petrophysics is a pivotal discipline that bridges engineering and geosciences for reservoir characterization
and development. New sensor technologies have enabled real-time streaming of large-volume, multi-scale,
and high-dimensional petrophysical data into our databases. Petrophysical data types are extremely diverse,
and include numeric curves, arrays, waveforms, images, maps, 3-D volumes, and texts. All data can be
indexed with depth (continuous or discrete) or time. Petrophysical data exhibits all the "7V" characteristics
of big data, i.e., volume, velocity, variety, variability, veracity, visualization, and value. This paper will give
an overview of both theories and applications of machine learning methods as applicable to petrophysical
big data analysis.

Recent publications indicate that petrophysical data-driven analytics (PDDA) has been emerging as
an active sub-discipline of petrophysics. Field examples from the petrophysics literature will be used
to illustrate the advantages of machine learning in the following technical areas: (1) Geological facies
classification or petrophysical rock typing; (2) Seismic rock properties or rock physics modeling; (3)
Petrophysical/geochemical/geomechanical properties prediction; (3) Fast physical modeling of logging
tools; (4) Well and reservoir surveillance; (6) Automated data quality control; (7) Pseudo data generation;
and (8) Logging or coring operation guidance.

The paper will also review the major challenges that need to be overcome before the potentially
game-changing value of machine learning for petrophysics discipline can be realized. First, a robust
theoretical foundation to support the application of machine leaning to petrophysical interpretation should
be established; second, the utility of existing machine learning algorithms must be evaluated and tested in
different petrophysical tasks with different data scenarios; third, procedures to control the quality of data
used in machine leaning algorithms need to be implemented and the associated uncertainties need to be
appropriately addressed. The paper will outlook the future opportunities of enabling advanced data analytics
to solve challenging oilfield problems in the era of the 4th industrial revolution (IR4.0).

Introduction
During the past decade, we have witnessed an unprecedented booming of real-world applications of big data
analytics, machine learning (ML), and artificial intelligence (AI) in many industries. Autonomous vehicles
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or self-driving cars, a breakthrough in harnessing big data and AI for simplifying and improving human
life, can serve as a good example among all the applications (Berger, 2014; Baruch, 2016). Not surprisingly,
digital transformation, big data, and ML/AI have also become buzz words in the oil & gas industry with
many field applications reported from both engineering and geosciences disciplines (Crnkovic-Friis and
Erlandson, 2015; Gu et al., 2016; Sidahmed et al., 2017; Wu et al., 2018; Noshi et al., 2018; Odi and Nguyen,
2018; Pham et al., 2018; Li, 2018; Maniar et al., 2018). Since 2016, almost every conference has one or
more dedicated plenary or technical sessions relevant to those topics. Meanwhile, a good number of articles
addressing the technical progresses of big data analytics in the upstream oil and gas businesses can be
found in the industrial flagship magazines such as Journal of Petroleum Technology and the Leading Edge
(Mehta, 2016; Hall, 2016; Carpenter, 2016; Jacobs, 2018; Ma, 2018; Saputelli, 2018). In addition, many
scholastic journals have dedicated special issues or editions to those topics that were applied in geosciences
or petroleum engineering (see the Appendix for a collected list).

If we take a retrospective review of the related upstream applications of ML/AI in the literature, petroleum
engineers and geoscientists have been harnessing machines and/or computers to dig into their databases for
some time to accomplish complex and challenging tasks (sometimes regarded as "mission impossible").
Figure 1 shows the trend for the number of publications on ML/AI topics in the SPE OnePetro digital library.
The peak of the first wave of AI applications can be dated back to the 1990s when old-generation predicting
tools such as neural networks, expert systems, genetic algorithms, and fuzzy logic algorithms started to pick
up their momentum in petroleum industrial applications (Dashevskiy et al., 1999; MacAllister et al., 1996;
Fang et al., 1992; Rivera, 1994; Cuddy and Putnam, 1998). One may notice that the number of ML papers
surpassed the number of AI papers near the year of 2014, which may indicate that ML has become a more
focused area of interest than the general AI. Deep learning methods revitalized the ML/AI applications in
many other industries and triggered another wave of AI applications in the petroleum industry in the past few
years (Crnkovic-Friis and Erlandson, 2015; Korjani et al., 2016; Li and Misra, 2017; Sidahmed et al., 2017;
Jobe et al., 2018; Odi and Nguyen, 2018; Pham et al., 2018; Li, 2018; Halpert, 2018; Li and Misra, 2018).

Figure 1—Trends of number of publications on "Machine Learning" and "Artificial Intelligence" in the SPE OnePetro
digital library. There seems to be several waves of ML/AI applications in the petroleum industry since the 1980s.

The most recent and significant wave (after 2010) is still climbing up and will likely boom in the next decade.
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Significant investments from both operators and service companies are in place to drive this digital
transformation revolution and IR4.0 (IKTVA 2017, Saudi Aramco Report). It is expected that the technical
breakthrough in big data analytics and AI areas will generate a more significant impact in the next few
decades to come. Many major and independent operators have established internal teams or departments
working on ML/AI and Data Analytics. Meanwhile, numerous high-tech startups focusing on ML/AI and
Data Analytics solutions or products have been established worldwide. ML, as a critical component of
IR4.0, has huge potential in exploring the business value obtainable from the streaming petrophysical big
data. Awareness of this potential and a high-level overview of data types, algorithms, and the existing
field applications in various technical areas will significantly benefit the industry workers in selecting and
applying machine learning algorithms to their own datasets to solve challenging field problems.

Emerging Trends of Petrophysical Data-Driven Analytics (PDDA)
In the petrophysics discipline, computer-aided formation evaluation (log analysis, interpretation, and
integration) has become the mainstream since the 1980s with a few major industrial software platforms
being developed (Doveton, 1986; Doveton, 1994). Popular data-driven methods in engineering include
data mining, data visualization, and machine (deep) learning. ML/AI based petrophysical applications have
also started to boom in the last decade. The confluence of distributed sensors, big data, internet of things,
high-performance computing, and advanced data analytics have contributed to large-scale applications
of petrophysical data driven analytics (PDDA) methods. Advanced implementations of PDDA methods
are gaining acceptance in integrated formation evaluation workflows. PDDA, as a cross-discipline area,
emerged from the Society of Petrophysicists and Well Log Analysts (SPWLA) in 2018. A Spring Topical
Conference and a special issue of SPWLA Petrophysics Journal were dedicated to this new trend (Xu and
Misra, 2018). Several areas in integrated formation evaluation showcased new advancements of data-driven
methods.

In one implementation, deep learning models are used to integrate and interpret image-type datasets for
geological-petrophysical analysis, such as thin sections, core/outcrop photos, image logs, seismic cross-
sections, and maps (Jobe et al., 2018; Zhu et al., 2018). Another implementation involves geologically
consistent integration of operational database and formation properties followed by the application of
data analytics to perform more effective and efficient field operations, such as drilling and completion
(Koryabkin et al., 2018; Al-Obaidi et al., 2018), fluid and rock sampling (Torlov et al., 2017), and
data acquisition. Furthermore, data-driven methods have been implemented in formation evaluation for
purposes of database reconstruction, noise filtering, and anomaly detection. Another popular application
is to minimize tedious, repetitive human efforts required for tasks such as data cleaning, depth shifting,
synthesizing missing data, and horizon picking (Zimmerman et al., 2018). In addition, data-driven analytics
is particularly amenable to reservoir characterization tasks, such as facies classification and rock typing
(Ozkan et al., 2011; Al-Mudhafar et al., 2017; Bize-Forest et al., 2018).

Notably, data mining and predictive modeling tasks on public databases can identify undiscovered and
underutilized hydrocarbon assets. Efficacy of data-driven predictive models can be significantly improved
by developing capabilities to transfer the statistical learning/mapping across: (1) reservoirs of varying rock/
fluid types, (2) wells of varying orientation, geometry, and completion type, and (3) sensor types and
configurations from various service providers (Bergman et al., 2017; Chen et al., 2018; Ismagilov et al.,
2018). In addition, extensive multi-disciplinary and multi-organizational studies are needed to demonstrate
the reliability of upstream oil and gas data analytics and data-driven predictive modeling in comparison to
computationally expensive physics-based modeling methods (Xu et al., 2018; Shen et al., 2018).

To understand how machines can help with petrophysical data analysis, it is necessary to have a high-
level overview of a generic framework that involves both diverse petrophysical data types and the existing
pool of ML algorithms.
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PDDA Generic Framework and Application Scenarios
Figure 2 shows a generic framework for utilizing ML algorithms to solve petrophysical problems. There
are three key components in this framework: petrophysical data (raw data or derived attributes), ML
algorithms, and output petrophysical properties. Petrophysics aims to solve formation evaluation and
reservoir description problems based on multiscale subsurface data, including reservoir core and fluids,
logs, well tests, seismic, and sometimes production data.

Figure 2—A generic framework for implementing PDDA to predict
geological-petrophysical properties that feed into reservoir models.

There could be numerous variations of this generic model if we consider all the diverse petrophysical
data types and the existing pool of algorithms. Here we list a few common petrophysical tasks that may
utilize machine learning methods.

Task 1: Automated log data quality control and assurance such as bad-hole flagging, effects of mud and
mud filtrate invasion, editing, and depth matching for a massive number of wells.

Task 2: Petrophysical rock typing and permeability prediction from core-log integration in a multi-well
field study.

Task 3: Lithofacies, sedimentary facies, or Dunham texture classification from images logs and analyzing
petrology and rock mechanics data (thin sections, SEMs, mineralogy, rock mechanical properties).

Task 4: Facies distribution in a 3D reservoir model based on core, logs, and seismic data.
Task 5: Utilizing a big operation database to analyze the root cause of a particular operational issue during

logging or coring, and predicting the likelihood of having this issue given the future operation conditions.
The list will expand with more applications reported from the industry. A section highlighting the most

recent PDDA applications will be presented later in this paper.

Petrophysical Data: BIG or NOT
Firstly, let's define the scope of big data analytics for petrophysical analysis. In a multi-disciplinary
collaborative environment, there should not be any clear boundaries between data used by different teams
such as geological, geophysical, petrophysical, or reservoir engineering. In fact, data acquisitions are often
initiated by more than one discipline and should be shared across the whole asset team to maximize its
value. In this paper, we generally and simply define the data commonly used by the petrophysics discipline
as petrophysical data. Petrophysical data comes from various sources with different formats or types.
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Petrophysical Data Sources
There are multiple sources of data that are commonly used by petrophysicists including core, log, well tests,
seismic, and production. Table 1 shows some typically acquired data from various sources. As the sensor
technologies are continuingly developing, the list will become longer, and should therefore not be regarded
as thorough.

Table 1—Petrophysical data sources and their typical range of vertical measurement scales.

Core Measurements Wellbore Measurements Remotely Sourced Measurements Reservoir Performance

nm – um – mm – cm scale cm – 10 m scale 10-100 m scale 10-1000 m scale

Micro-computed tomographic
images and digital rock physics
Petrography (scanning electron
microscope/thin sections/core
photos)
Mineralogy (x-ray diffraction/x-ray
fluorescence)
Routine core analyses (porosity/grain
density/permeability/saturations)
Special core analyses (Nuclear
magnetic resonance/capillary
pressure/electrical properties/relative
permeability)
Core Gamma Ray
Facies description

Borehole Image (electrical and
acoustic)
Dielectric attributes
Nuclear magnetic resonance
Nuclear spectroscopy
Formation testing and fluid sampling
Sonic transmission and reflection
attributes (various propagation
modes)
Cased hole nuclear attributes
(various neutron interactions,
spectroscopy, gravel pack
evaluation)
Cement evaluation
Resistivity
Fluid production attributes (velocity,
capacitance, density, temperature)
Mud log (sample description, drilling
parameters, gas chromatography)

Through-casing resistivity
Cross-well methods
Microseismic
Seismic reflection
Controlled-source electromagnetic
method

Drill stem test (inflow and fluid
sampling)
Pressure transient analysis
Interference tests
Decline curves
Production data analyses

Petrophysical Data Types
Numerical (1-D curves): Most conventional well logs are recorded in 1-D numerical format such as gamma
ray, neutron porosity, bulk density, and resistivity.

Arrays or Waveforms: Data from some advanced logging sensors are recorded in arrays or waveforms
such as nuclear magnetic resonance, nuclear spectroscopy, formation testing, and dipole sonic waveforms.

Images or maps: Petrographic data such as thin sections and SEM images, image logs, cross sections
(from multiple wells or seismic). 2-D maps can be generated from NMR and sonic logs.

3-D volumes: Several types of petrophysical data are spatially distributed such as x-ray computed
tomography, seismic volumes, and formation testing.

Text: Lithology column and facies description from core and mud logging, annotations from drilling or
interpreters.

Data can be depth indexed or time indexed. Much of the depth-indexed well logging data, considered a
continuous format (i.e., wireline logs) is sampled based on time and mapped to depth, generally assuming a
constant instrument velocity over short intervals. The depth index may also be discrete, e.g., core and fluid
sampling. 3-D data sets are critical for understanding heterogeneity formation testing and include core x-
ray tomography and remotely sourced measurements. Pressure transient testing is a unique 3-D data set,
volumes of reservoir are sampled and discrete barriers may be diagnosed, but the exact spatial locations
are not know.

Petrophysical Data Acquisition Scenarios
Petrophysical data acquisition for formation evaluation gets reduced with the reservoir exploration and
development cycle as reservoir uncertainty level decreases (Fig. 3). Therefore, sometimes it is hard to find
a common set of data in every well for a field.
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Figure 3—Petrophysical data acquisition for formation evaluation gets reduced with the
reservoir exploration and development cycle as reservoir uncertainty level decreases.

Exploration & Appraisal Wells or Key Development Wells: Whole and sidewall core/fluid sampling/
complete logging suites are commonly acquired to get as much information as possible to reduce the
uncertainty in the early phase of an E&P project.

Development Wells (non-key): In non-key vertical wells, typically only basic logging suites (gamma
ray, neutron porosity, bulk density, and resistivity) are included in the data acquisition plan.

Development Wells (High-Angle or Horizontal): In high-angle or horizontal (HAHZ) wells, only a
reduced set of formation evaluation logs are acquired by LWD, with advanced geosteering tools deployed
in complex geological settings to maximize reservoir contact (Mudhhi et al., 2004). For unconventional
reservoir development, it is common to only acquire gamma ray logs in many horizontal wells (Xu et al.,
2016).

Is Petrophysical Data Big?
It is still debatable whether petrophysical data can be considered big or not, and it should be treated on a
case-by-case basis. In general, petrophysical data meets the following "7V" characteristics that are common
to big data.

Volume: The volume of core data and conventional numerical types of logs from a single well may not
be considered as big. However, the data size of a field can become significantly large as the data acquisition
expands to multiple well scenarios with few key wells having large datasets of advanced logs, such as sonic
& NMR waveforms or borehole image logs.

Velocity: New sensor technologies, high-speed telemetries, and remote communications have enabled
real-time streaming of large-volume, multi-scale, and high-dimensional petrophysical data into our
databases.

Variety: Petrophysical data types are extremely diverse, and include images, waveforms, numeric values
with continuous and discrete depth index (refer to Table 1 and Table 2 for a variety of petrophysical data).
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Table 2—List of some commonly used petrophysical data and classification based on their attributes.

Data Source Type Depth-index Dimension

Routine Core Analysis Core Numerical Discrete Low

X-Ray Diffraction (XRD) Mineralogy Core Numerical Discrete High

SEM Core Image Discrete High

Thin Sections Core Image Discrete High

Core Photo Core Image Discrete High

Capillary Pressure Core Array Discrete High

Electrical properties Core Numerical Discrete High

Relative Permeability Core Array Discrete High

Facies Description Core Text Discrete High

Mud logging Mud Log Numerical and Text Continuous Low

Conventional Logs Log Numerical Continuous Low

Dielectric Log Log Numerical Continuous Low

Nuclear Spectroscopy Log Array Continuous High

NMR Log Log Waveforms/maps Continuous High

Image Log Log Image Continuous High

Sonic Log Log Waveforms/maps Continuous High

Formation Testing (pressure build up/draw down) Log Array (pressure vs.
time) Discrete High

Pressure Transient Production 3-D Discrete/Time-index High

Seismic Attributes Seismic 3-D Continuous High

Variability: Sources of variability in petrophysical data includes geological controls such as
heterogeneity, engineering factors such as operation environments (drilling/logging), and physical sensors
(i.e., tools from different vendors).

Veracity: Petrophysical data are regarded as one of the most quantitative and reliable data sources for both
geoscience and engineering disciplines to use. However, data quality can still be a challenge considering
the tough logging environments and the potential physical sensor failures. It is very common to have bad
and noisy data that need to undergo quality control before feeding it into any machines.

Visualization: Petrophysical data can be visualized in multiple ways to reveal the meaningful trends,
patterns, and clusters. Histograms, cross-plots, logging track displays, and well correlation graphs are some
typical methods to visualize petrophysical data.

Value: Petrophysical data plays an increasingly important role in modern reservoir modeling and
characterization for estimating both reserve and production. It has big impact as well as value on business
decision making.

Ad-hoc Challenges of Petrophysical Data
In addition to the commonly shared "7V" characteristics, petrophysical data has its own unique challenges
in two aspects: scales and dimensions.

Multi-Scale Challenge.   Petrophysical data comes from physical sensors that have different dimensions
and resolutions, i.e., vertical, radial and azimuthal. From pore scale to core to logs to seismic to production
history, the scale of measurements span many orders of magnitude. Core data can be measured on
micrometer to centimeter resolution while log data are normally measured at centimeter to meter resolution.
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Even in the log domain only, the scale of measurements is also a variable depending on the logging tool
physics and vendors’ tool designs. Figure 4 shows a wide range of logging tools and their resolutions as
well as depth of investigation. As we can see, while the density logs can achieve a resolution less than 1 ft,
the induction logs commonly have a lower resolution of nearly 3 ft. The azimuthal resolution varies from
centimeter with focused mesaurements to full-circumference with omnidirectional measurements.

Figure 4—Comparison of vertical resolution (vertical arrows) and radial depth
of investigation (horizontal arrows) of common well logs (Verdin, 2010).

Multi-Dimension Challenge.   Petrophysical log data can be of different dimensions depending on
the physical sensor measurements. Most conventional logs are 1D numerical values with specialty
logs providing 2-D waveforms. Core tomography, production testing, and surface seismic are 3D. The
dimensions of the data integrated also increases as more physical measurements become available. If we
consider a single numerical log such as gamma ray as 1D, then the log data will become highly dimensional
by appending more logging tracks. In fact, a petrophysical data set can be a mixture of data of different
formats and dimensions. This is a unique challenge that petrophysicists need to handle.

Data: The bigger, the better?
There is a claim in the ML community that bigger data gives better models or results. However, this can
be a misnomer in the petrophysics area. In petrophysical workflows, the rules governing the petrophysical
estimations and interpretations are driven by the available data, so data quality and quantity holds critical
importance. Having bad data is considered worse than having no data. Density, representativeness, and
coverage are other parameters of the data besides data quality that are required for data-driven petrophysics
(Ma, 2018). Therefore, we need to pay attention to several important aspects such as the quality and
relevancy of our data before we can make this claim true.

Data Quality.   "Garbage in, garbage out" is another voice often heard in geological modeling, reservoir
dynamic simulation, and the data analytics community. Regardless of the source, raw petrophysical
data is often "dirty" and needs rigorous and meticulous quality control by petrophysicists following
protocols (Theys, 2011). Frost and Quinn (2018) discuss methods to ensure data quality and to correct
environmentally-affected data, data reconstruction, and statistical correction and reconstruction processes
for open hole and cased hole wireline logs, as well as logging-while-drilling data. If not adequately
controlled for data quality, ML engines and AI workflows may homogenize and obscure relevant geologic
and reservoir features. However, data quality control work is cumbersome, especially for large field projects
that contain hundreds or even thousands of wells. ML has demonstrated some advantages over humans in
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delivering consistent data QC work such as depth matching. Zimmermann et al. (2018) tested ML based
methods as a new direction to tackle depth matching issues with a fully automated solution.

Data Relevancy.   Irrelevant data can also add confusion to the predictive model. Many tests have shown
that use of irrelevant data will only deteriorate the accuracy and efficiency of the predictive models. The
relevancy should be based on some physical or petrophysical principles. For example, gamma ray logs are
relevant to permeability in a shaly sand reservoir because they are an indicator of total clay volume, which
is a controlling factor of many rock properties such as effective porosity, pore throat size, and permeability.
But for a carbonate reservoir with an almost flat gamma ray response, inclusion of gamma ray logs in the
permeability prediction model may not help at all. Feature selection in many old-generation algorithms
needs to be performed carefully by domain experts. Many new-generation algorithms have the capability
to determine the relevancy of various features and put less weighting factor on features of low relevancy
(Akande et al., 2015; Anifowose et al., 2016).

Petrophysical Model: Physics Based or Data-Driven
In general, petrophysical models are grounded in sound physics, referred as mechanistic models, or
developed as empirical or phenomenological models. The petrophysical models are used to quantitatively
derive various petrophysical properties by processing the physical measurements obtained from core or
well logs. For example, Archie's model and its variations are empirical models that are commonly used
to calculate water saturation by jointly processing porosity estimations and resistivity logs (Archie, 1942).
However, Archie's model involves several assumptions, such as clay-free rocks, no significant invasion, and
absence of complex pore systems. Archie's model is inadequate for clay-rich, highly tortuous, and thinly
laminated reservoirs (Worthington, 2000). Similarly, other mechanistic, empirical, and phenomenological
models involve various assumptions for the models to be valid. When the assumptions of these models
cannot be met due to the complexity, heterogeneity, and multiscale nature of the physical processes, then
these models become unsuitable for petrophysical interpretations and estimations.

In some cases, the models required for petrophysical calculations need to be extremely nonlinear and non-
explicit. Mechanistic, empirical, and phenomenological models cannot account for such nonlinearity. ML
methods can be used as an alternative approach to develop data-driven models for better characterization of
petrophysical processes and systems. Data-driven models can provide a computationally cheaper surrogate
model to substitute the costly physics-based model or provide an approximate statistical model from
observations when there is no deterministic physics-based model (Aifa, 2014).

Machine Learning Algorithms Overview
ML extracts patterns and structures from historical data (training data for supervised or unsupervised
learning) or by interacting with an environment (reinforcement learning) to characterize, identify, or predict
the behavior of a system and/or process. Such systems can be massively multivariate involving thousands of
features/attributes. ML algorithms use the data to learn the underlying behavior of the system without prior
knowledge of the nature of relationships between data points. ML is well suited to address those problems
where theoretical physics-based knowledge is still incomplete but for which we do have a significant number
of measurements and observations.

ML techniques are broadly categorized into supervised learning, unsupervised learning, and
reinforcement learning. Unlike unsupervised learning, supervised learning relates features/attributes to
labels. Two popular supervised learning tasks are regression and classification. Regression generates
continuous outputs/responses (e.g., porosity, saturation, permeability), whereas classification generates
discrete output/classes/labels (e.g., lithology, facies, rock types). Unsupervised learning processes features/
attributes to identify commonalities and differences to learn relationships and patterns in the training data.
Clustering, anomaly detection, dimensionality reduction, feature ranking, and data visualization are few
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tasks based on unsupervised learning. In supervised and unsupervised learning, a comprehensive ‘training
dataset’ of examples is constructed covering as much of the system parameter space as possible. For
supervised learning, a random subset of the data is put aside for a completely independent testing. A glimpse
at the pool of ML algorithms will help understand their applicability to our specific petrophysical data set.

Supervised Learning vs. Unsupervised Learning
In supervised learning, the data-driven model is built by processing a known labeled dataset that includes
desired inputs (features) and outputs (labels/responses). Supervised learning finds the model that generates
the outputs based on the inputs. A physics-driven model is a theory-based mathematical mapping that relates
the input and output, whereas supervised learning identifies patterns in the available dataset, learns from
observations, and makes the necessary predictions based on statistical mapping of inputs and outputs. During
the process of building the supervised learning model, the predictions are compared to the output and the
model is improved based on a loss function. This process continues until the data-driven model achieves a
high level of accuracy and performance so the loss function can be minimized.

Unsupervised learning processes datasets to identify patterns, relations, and commonalities without using
examples, labels, and human instruction. This ML technique organizes the data in a certain way that
describes the structure, variance, density, distribution, etc. of the dataset. This might mean grouping the
data into clusters or arranging it in a way that looks more organized or easy to visualize. Few examples
of unsupervised learning: dimensionality reduction, data compression, manifold learning, and feature
extraction. An inherent issue with unsupervised learning is to assess the efficacy and reliability of the model.

Shallow Learning vs. Deep learning
Deep learning is a subset of ML that uses multiple layers of non-linear processing units to generate
multiple levels of representation of the data corresponding to various levels of abstraction. Deep learning
is also referred as representational learning. Such an architecture can learn representations and features
directly from the input with little to no prior knowledge, hand-coded rules, or engineered features. Recently,
deep learning has delivered state-of-the-art accuracy in tasks such as object detection, speech recognition,
and language translation. Their highly flexible architectures can learn directly from raw data, such that
their predictive accuracy increases with a greater exposure to new data. Unlike deep learning, shallow
learning is based on the user feeding prior knowledge and engineering features as additional inputs to
aid the learning process. The emphasis in shallow learning is often (not always) on feature engineering
and selection, whereas the emphasis in deep learning is on defining the most useful computational graph
topology and finding optimal parameters/hyperparameters. A few examples of shallow learners are decision
trees, support vector machines, and Naive Bayes. Multilayer feed forward neural networks, autoencoders,
recurrent neural networks are examples of deep learning. Unlike shallow learning that plateau at a certain
level of performance with the supply of additional examples and training data, deep learning models scale
with data.

Regression vs. Classification
Supervised learning analyzes training data and produces inferred function that can map new examples.
Depending on the type of output, supervised algorithms are broadly categorized into regression and
classification. Regression generates continuous outputs/responses (e.g., porosity, saturation, permeability).
It determines the contribution and correlation of features that produce a specific output. On the other
hand, a classification generates discrete output/classes/labels (e.g., lithology, facies, and rock types). Unlike
regression, classification is done when output is labelled into categories and the classifier assigns a label/
class based on certain features.

Table 3 lists some commonly used ML algorithms in the Petrophysics literature. This is by no means a
complete list and many algorithms can be adapted to fit for different purposes.
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Table 3—Summary of ML algorithms commonly used for solving geological
and petrophysical problems (Wikipedia: Outline of machine learning, 2018).

Algorithms References

Support Vector Machine (SVM) Nazari et al., 2011; Zhao et al., 2015B; Venna et al., 2018

Random Forest (RF) Bestagini et al., 2017; Akinnikawe et al., 2018

Self-Organizing Map (SOM) Zhao et al., 2015A

K-means Clustering Gupta et al., 2018; Han et al., 2019

Hierarchical Clustering Gupta et al., 2018; Han et al., 2019

Expectation-Maximization (EM) Schlanser et al., 2014

Bayesian Network (BN) Agar et al., 2018; Shen et al., 2018

Convolutional Neural Network (CNN) Jobe et al., 2018; Zhu et al., 2018; Alqahtani et al., 2018; Li and Misra, 2018

Recurrent Neural Network (RNN) Alfarraj and AlRegib, 2018

Autoencoder Neural Network Li and Misra, 2017; Li and Misra, 2018

Highlights of the Most Recent ML Applications in Petrophysics
In Petrophysics literature, ML has demonstrated some advantages over the conventional methods in the
following technical areas: (1) Geological facies classification or petrophysical rock typing; (2) Seismic rock
properties or rock physics modeling; (3) Petrophysical/geochemical/geomechanical properties prediction;
(4) Fast physical modeling of logging tools; (5) Well and reservoir surveillance; (6) Automated data quality
control; (7) Pseudo data generation; (8) Logging or coring operation guidance.

A special issue of the Petrophysics Journal was released in Dec. 2018, highlighting PDDA and featuring
eleven papers covering theories and applications of emerging data analytics and ML methods as applicable
to petrophysical data analysis. Table 4 features those recent PDDA applications by summarizing the input
data, algorithms, and tasks of each reference in all different technical areas.

Table 4—Summary of the input data, algorithms, and tasks of each
reference in the special issue of SPWLA Petrophysics Journal (Dec. 2018).

Reference Data Input Algorithms Achieved Tasks

Jobe et al., 2018 Thin section images CNN – deep learning Dunham texture classification

Zhu et al., 2018 Well logs Wavelet decomposition and CNN – deep
learning

Lithology classification

Gupta et al., 2018 Well logs K-
means, hierarchical
clustering, and SVM

Hydraulic fracturing location

He et al., 2018 Well logs OLS, PLS, LASSO, MARS, ANN. Pseudo log generation

Tariq et al., 2018 Well logs Functional Network Static Poisson's ratio prediction

Xu et al., 2018 LWD logs Neural network, Gradient-Boost Regression
Tree, Gaussian Process Regression

LWD resistivity modeling

Shen et al., 2018 LWD logs Transdimensional Bayesian method Ultradeep azimuthal resistivity interpretation and
uncertainty quantification

Venna et al., 2018 Acoustic signal PCA & SVM Flowing phase classification

Chen et al., 2018 Fluid optical data Forward & inverse neural network Missing fluid data reconstruction

Frost and Quinn, 2018 Logs in general Automation workflows Data quality control

Zimmermann et al., 2018 Logs in general Fully connected neural network Automatic depth matching
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Geological facies classification or petrophysical rock typing
ML approaches have proven to be efficient and effective in automating facies classification with core
images, well logs, and seismic attributes (Wang et al., 2014). Izadi et al. developed an intelligent system
for mineral identification in thin section images based on both incremental color clustering (2015, overall
accuracy 92.15%) and artificial neural network (2017, overall accuracy 93.81%). Cui et al. (2017) applied
the principal component analysis method on well logs to classify four diagenetic facies pre-defined by
samples from a tight sandstone reservoir in the Ordos Basin, Central China. Schlanser et al. (2016) tested
a statistical clustering algorithm with petrophysical and elastic well logs for lithofacies classification in
the Marcellus Shale. Zhao et al. (2015A) used different ML algorithms, such as self-organizing map
and artificial neural networks to assist quantitative seismic facies interpretation that differentiated the
architectural elements of a turbidite system in the Canterbury Basin, offshore New Zealand. Anifowose et
al. (2016 & 2017) demonstrated integrated reservoir studies based on a hybrid computational intelligence
model (2016) and ensemble ML (2017). Jobe et al. (2018) introduced two ML approaches to interpret thin
section image data for geological-petrophysical analysis. The first approach uses pore-geometric analysis
and four ML algorithms to train and classify samples by reservoir zone. The second approach uses a
convolutional neural network to classify and predict carbonate Dunham textures of mudstone, wackestone,
packstone and grainstone. (Fig. 5). Zhu et al. (2018) proposed a method based on wavelet decomposition to
construct multilayer image-style input for each logging point, converting the problem of logging lithological
interpretation into a supervised image recognition task. Real-world application in the Daqing oilfield
demonstrates that the proposed method is able to perform more accurate lithological classification compared
to the ordinary neural network, which provides a reliable alternative way for further logging lithological
interpretation practices (Fig. 6).

Figure 5—Computational graph of TensorFlow Inception-v3 convolutional neural network
(image-based deep learning) for carbonate Dunham textures classification (Jobe et al. 2018).
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Figure 6—Construction of input image layers for the specified point by Zhu et al. 2018.

Seismic rock properties or rock physics modeling
Seismic rock properties and rock physics is a unique area integrating geophysics and petrophysics. Data-
driven ML approaches have gained momentum in geological & geophysical interpretations (Zhao et al.,
2015C; Hall, 2016; Zhang et al., 2018; Bandura et al., 2018; Alfarraj et al., 2018; Ma et al., 2018). Digging
into the latest SEG literature, we can find many applications of using ML to do velocity autopicking
(Smith, 2017), amplitude-variation-with-angle classification (Bougher and Hermann, 2016), seismic facies
classification (Bestagini et al., 2017; Chopra and Marfurt, 2018), elastic facies classification (Schlanser et
al. 2014), attenuation logs prediction and modeling (Parra et al. 2014), shear wave velocity prediction (Du et
al., 2018), and geomechanical properties estimation (Gu et al., 2016). On the small scale end of rock physics,
ML has been used in combination with digital rock physics for nanoscale pore-space characterization
(Kazak, 2018), porous media properties prediction (Alqahtani et al., 2018), pore system classification (Serag
et al., 2018), and rock mechanical properties characterization (Saad et al., 2018).

Petrophysical/Geochemical/Geomechanical properties prediction
As previously mentioned, most petrophysical models will become nonlinear or non-explicit when multiple
factors contribute and only indirect physical measurements can be taken. Data-driven models can be used
as an alternative approach to predict many petrophysical properties such as lithology (Shin et al., 2018),
porosity (An et al., 2018), saturation or fluid volumes (Khan et al., 2018; Jain et al., 2015; Venkataramanan
et al., 2018), permeability (Nazari et al., 2011; Anifowose et al., 2013; Shabab et al., 2016), total organic
content (Zhao et al., 2015B; Mahmoud et al., 2017), kerogen properties (Craddock et al., 2018), net pay
(Masoudi et al., 2012), and Poisson's ratio (Tariq et al., 2018). In particular, it is noted that machine learning
has huge potential in processing and interpreting advanced well logs such as NMR echoes, image logs, sonic
waveforms, nuclear spectroscopy which often demand more advanced algorithms to decipher the hidden
petrophysics properties (Jain et al., 2015; Venkataramanan et al., 2018; Han et al., 2019).

Fast physical modeling of logging tools
Physical modeling and simulation of logging tools requires intensive computational time. This is particularly
true for nuclear, resistivity, and sonic tools. Several applications of using ML to achieve fast physical
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modeling of logging tools were reported. Xu et al. (2018) introduced a variety of ML techniques into the
electromagnetic modeling problem for LWD (Fig. 7). With their ML-based methods, modeling of LWD
resistivity tool responses can be accelerated, with higher accuracy, to support real time drilling scenarios.
The ML approach separates the training phase from the real-time prediction phase. This feature makes it
a perfect tool to facilitate real-time workflow. Compared with the existing look-up table approach, the ML
approach can be more accurate. Furthermore, it also has much smaller memory requirement, so it has the
potential to support a larger training dataset and higher dimensional input parameter space.

Figure 7—Use of ML for logging tool physical modeling (Xu et al. 2018).

Well and reservoir surveillance
Real-time reservoir monitoring or surveillance with distributed acoustic sensing (DAS) and distributed
temperature sensing (DTS) by using fiber optics technology has been widely deployed in some major
oilfields (Hveding and Bukhamsin, 2018). These distributed fiber-optic measurements enables nearly
continuous monitoring of dynamic downhole environments changing with both space and time. Although
continuous monitoring greatly facilitates asset management applications, it comes with its unique challenges
associated with data transmission, management, and security. Cloud-based services for fiber-optic data
management have been successfully deployed in the petroleum industry as an effective way to collect,
transfer, store and visualize distributed measurement data from various downhole environments. Yang et
al. (2018) presented their successful integration of an analytics library into the cloud-based fiber-optic data
management system. This integration enables real-time, and in some cases near real-time, asset decision
making. They also introduced a few application examples of the analytics integration using real-time
data streamed directly from the field. Their applications included gas lift alerts, hydrate monitoring, and
distributed strain alerting.

Automated data quality control
Data quality control includes data cleaning, data editing, data normalization, and depth shifting or matching.
It is a critical step for reservoir description (Voleti et al., 2018) but can be very tedious and time-consuming
if hundreds or thousands of wells (each with multiple logs) need to be analyzed. ML can be used to create
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automated data quality control workflow. Andrianova et al. (2018) used ML methods to automatically
quality control large volumes of field data including well logs, fluid properties, and well production and
interventions. Akkurt et al. (2018) utilized ML system to automate the workflow of identifying outliers in
bulk-density and compressional slowness logs, and to reconstruct them using data-driven predictive models.
Zimmermann et al. (2018) emphasize that depth matching is critical for integrated well log analysis but
remains a long-standing challenge in the industry. Traditional methods do not guarantee convincing depth
matches without user intervention. ML opens the door to leverage fully automated computer based solutions
to tackles this tedious and challenging issue.

Pseudo data generation
Well logs acquired in bad-hole conditions often exhibit poor quality and need to be either removed or
edited. A few instances require specific logs to be generated/acquired in a well or an interval to enable
running a complete petrophysical or reservoir characterization workflow. For example, sonic logs are often
missing in shallow zones or even not acquired in many development wells due to operational or financial
constraints. But sonic logs are critical to time-to-depth conversion as well as seismic well tie workflow. He et
al. (2018) performed a comparative study of various shallow learning methods to synthesize compressional
and shear travel time logs in the absence of a sonic logging tool. The shallow learning models processed
13 conventional and easy-to-acquire logs, namely lithology, gamma ray, caliper, density porosity, neutron
porosity, photoelectric factor, bulk density, and resistivity at six depths of investigation. The best performing
methods for the sonic logs syntheses were Artificial Neural Networks (ANN) and Multivariate Adaptive
Regression Splines (MARS) that synthesized the logs at a coefficient of determination (R2) of 0.85. ANN
and MARS performed better than ordinary least squares (OLS), partial least squares (PLS), ridge regression,
LASSO, and Elastic Net. Li et al. (2018) extended the workflow proposed by He et al. (2018) that applied
six clustering methods to identify formations that are not suitable for sonic log synthesis using the regression
models.

Chen et al. (2018) presented a novel mutual-complementing method that enables the reconstruction of
missing fluid optical measurement data in external public databases (Fig. 8). In this method, forward and
inverse neural networks are used to build multivariate correlation models between optical measurements
and fluid composition/property data in the in-house database. The neural networks can then be applied to an
external petroleum fluid database by alternatively performing forward and inverse computation to evaluate
the data consistency and to reconstruct the missing fluid optical measurement, therefore augmenting the in-
house database with enhanced sample diversity and measurable improvements for downhole fluid analysis.
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Figure 8—Workflow applied to reconstructing optical principal spectroscopy components (PSC) and
spectral data from external sources using available fluid compositional inputs (Chen et al. 2018).

Operation guidance: logging, coring, fluid sampling, and fracturing
ML and data analytics also found their extensive applications in guiding wellsite operations such as
logging, coring, fluid sampling, or even hydraulic fracturing. Large operators and service companies have
accumulated multi-year experience in certain jobs from worldwide locations under different operation
environments and reservoir conditions. Massive relevant data from their job history can be pooled together
to form a database which can be used to build predictive models for diagnosing operation issues or guiding
future operations. Xu et al. (2016) presented case histories and lessons learned from experience with 304
wireline formation pressure runs implemented with downhole automation controls. They used smart self-
learning operating methods to achieve reliable performance by improving the accuracy of the pressure and
mobility data as well as reducing the test duration. Torlov et al. (2017) studied many factors that impact
rotary sidewall coring service quality from over 3000 attempted samples by 8 different types of rotary coring
tools of 3 logging companies. They used statistical methods such as principal component analysis to make
data-driven assessment of rotary sidewall coring performance. Gupta et al. (2018) used several clustering
techniques, including K-means and hierarchical clustering, to identify the most suitable cluster locations for
hydraulic fracturing. The results can be upscaled to triple combo logs by supervised clustering techniques
such as decision trees, gradient boosting and support vector machines. The upscaled results can be used to
select optimal completion zones. A multivariable statistical analysis was done with a large formation testing
database comprising 344 fluid sampling stations from 59 wells located across several Gulf of Mexico fields,
to determine the probability of fishing and the top five factors that cause fishing (Wu et al., 2015; Pineda
et al., 2018).

Key Challenges for PDDA
Data-driven methods require exposure to large datasets for the purposes of extracting patterns and trends
in the data to build predictive models and for testing the robustness and generalization capabilities of these
models. A big challenge in upstream oil and gas is the inconsistent data quality and limited data quantity
available for ML applications. Small oil and gas companies and academia often lack large and complete
datasets. An industry-wide effort is necessary to generate and compile extensive high-quality datasets,
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possibly masked, that can foster development of data-driven methods. In 2018, Equinor and the Volve
license partners decided to disclose all subsurface and operating data from Volve. This has been the most
comprehensive oilfield data release so far, which is a milestone in oilfield data sharing.

Without rigorous data preprocessing and quality control, the quality and relevance of predictive models
deteriorate with the increase of available data. Technical presentation, dissemination, and demonstration
of ML implementations should emphasize data cleaning, standardization, normalization, and calibration.
Data conditioning and feature selection improve the robustness of the data-driven models. A standardized
quality control procedure for data-driven methods will significantly mitigate the aforementioned problems
and improve computational efficiency as well as predictive capability (Proett et al., 2015). Lack of well-
trained data technicians, investment in data management, interdisciplinary integration, industrial standards
and best practices lead to poorly performing data-driven solutions. Despite ideal data quality and reliable
data preprocessing, applications of data-driven methods are challenging in the presence of heterogeneous
and multi-scale nature of rocks, limited volume of sensor investigations, real-time operational requirements,
and high-dimensional data with large uncertainty.

In addition to the above-mentioned challenges, there remains a few other pertinent issues. Users of data-
driven methods should evaluate the results by adopting the following techniques: blind source testing, offset
well comparison, ensemble approach, and cross validation. From a petrophysical viewpoint, these methods
need to be geologically consistent, which mandates extensive training with field analogs and geological
rules followed by populating the reservoir model with all the constraints extracted from the training data.
Efficacy of data-driven predictive models can be significantly improved by developing capabilities to
transfer the statistical learning/mapping across: (1) reservoirs of varying rock/fluid types, (2) wells of
varying orientation, geometry, and completion type, and (3) sensor types and configurations from various
service providers.

Software packages for log interpretation and formation evaluation may consider providing modules that
can integrate with open-source data analytics software and codes. The next generation of petrophysicists
and log analysts should be trained through standardized courses, internships, software training, and good
exposure to business cases. In the near future, logging tools and software development and design may
be directly geared towards data-driven method implementations, which require a completely new way of
thinking that builds on our experience with physics-centered models and tools. ML methods are still not
intelligent enough to aggregate human experience and expertise. For the data-driven methods to become
more intelligent, there is a need for collaboration among the petrophysics, tool physics, and data science
domain experts. Such cross-disciplinary collaborations are necessary, but still remains a challenge.

Future Outlook and Summary
The new era of digital transformation has opened numerous opportunities to solve the challenging problems
associated with the big data generated from the oil and gas industry. A glimpse of the recent applications
in the petrophysics domain indicates that a fully blossomed digital age is yet to come. Several critical
conditions have been met to trigger this revolution. First, there has been increasing awareness of the
potential use of advanced data analytics in the petroleum industry; second, advanced algorithms (from other
industries) and high-performance computing machines (GPUs) are maturing and ready to use; third, tough
business environment necessitates better efficiency and lower cost which provide a strong business drive
for new technology implementation; lastly, the oil and gas industry is training its technical staff to apply the
right technology at the right time to solve the right problems using the right data.

The petrophysics discipline has abundant and quantitative data to leverage the emerging ML/AI
technology to accomplish challenging tasks in almost every technical area. PDDA has become one of
the most active sub-disciplines of petrophysics that triggered widespread interest from both operators and
service companies. We need to keep in mind that there are still some unique and outstanding challenges that
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need to be resolved before another wave of industrial applications of ML/AI technology comes to make
industry wide business impact. To go beyond mysterious black-box applications, fundamental research work
must be conducted thoroughly to understand both data and algorithms so that ML/AI technology will have
a solid foundation to expedite IR 4.0 in the petroleum industry.
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